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Assembly of appropriately oriented actin cables nucleated by for-
min proteins is necessary for many biological processes in diverse
eukaryotes. However, compared with knowledge of how nucle-
ation of dendritic actin filament arrays by the actin-related pro-
tein-2/3 complex is regulated, the in vivo regulatory mechanisms
for actin cable formation are less clear. To gain insights into mech-
anisms for regulating actin cable assembly, we reconstituted the
assembly process in vitro by introducing microspheres functional-
ized with the C terminus of the budding yeast formin Bni1 into
extracts prepared from yeast cells at different cell-cycle stages. EM
studies showed that unbranched actin filament bundles were
reconstituted successfully in the yeast extracts. Only extracts
enriched in the mitotic cyclin Clb2 were competent for actin cable
assembly, and cyclin-dependent kinase 1 activity was indispensi-
ble. Cyclin-dependent kinase 1 activity also was found to regulate
cable assembly in vivo. Here we present evidence that formin cell-
cycle regulation is conserved in vertebrates. The use of the cable-
reconstitution system to test roles for the key actin-binding proteins
tropomyosin, capping protein, and cofilin provided important
insights into assembly regulation. Furthermore, using mass spec-
trometry, we identified components of the actin cables formed in
yeast extracts, providing the basis for comprehensive understanding
of cable assembly and regulation.
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Eukaryotic cells contain populations of actin structures with
distinct architectures and protein compositions, which me-

diate varied cellular processes (1). Understanding how F-actin
polymerization is regulated in time and space is critical to un-
derstanding how actin structures provide mechanical forces for
corresponding biological processes. Branched actin filament
arrays, which concentrate at sites of clathrin-mediated endocy-
tosis (2, 3) and at the leading edge of motile cells (4), are nu-
cleated by the actin-related protein-2/3 (Arp2/3) complex. In
contrast, bundles of unbranched actin filaments, which sometimes
mediate vesicle trafficking or form myosin-containing contractile
bundles, often are nucleated by formin proteins (5–14).
Much has been learned about how branched actin filaments

are polymerized by the Arp2/3 complex and how these filaments
function in processes such as endocytosis (2, 15). In contrast, rel-
atively little is known about how actin cables are assembled under
physiological conditions. In previous studies, branched actin fila-
ments derived from the Arp2/3 complex have been reconstituted
using purified proteins (16–19) or cellular extracts (20–25). When
microbeads were coated with nucleation-promoting factors for the
Arp2/3 complex and then were incubated in cell extracts, actin
comet tails were formed by sequential actin nucleation, symmetry
breaking, and tail elongation. Importantly, the motility behavior of
F-actin assembled by the Arp2/3 complex using defined, purified
proteins differs from that of F-actin assembled by the Arp2/3
complex in the full complexity of cytoplasmic extracts (19, 26–28).
Formin-based actin filament assembly using purified proteins

also has been reported (29, 30). However, reconstitution of

formin-derived actin cables under the more physiological con-
ditions represented by cell extracts has not yet been reported.
The actin nucleation activity of formin proteins is regulated by

an inhibitory interaction between the N- and C-terminal domains,
which can be released when GTP-bound Rho protein binds to the
formin N-terminal domain, allowing access of the C terminus
(FH1-COOH) to actin filament barbed ends (31–40). In yeast, the
formin Bni1 N terminus also has an inhibitory effect on actin
nucleation through binding to the C terminus (41).
Interestingly, several recent reports provided evidence for

cell-cycle regulation of F-actin dynamics in oocytes and early
embryos (42–45). However, which specific types of actin struc-
tures are regulated by the cell cycle and what kind of nucleation
factors and actin interacting-proteins are involved remain to be
determined.
Here, we report a reconstitution of actin cables in yeast ex-

tracts from microbeads derivatized with Bni1 FH1-COOH, iden-
tifying the proteins involved, increasing the inventory of the
proteins that regulate actin cable dynamics and establishing that
the actin cable reconstitution in cytoplasmic extracts is cell-
cycle regulated.

Results
Reconstitution of Bni1-Derived Actin Cable Assembly in Mitotic Yeast
Extracts. To investigate the regulation and assembly of actin cables
nucleated by formins, we took advantage of the yeast cytoplasmic
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extract system previously used to reconstitute Arp2/3-mediated
actin filament assembly and introduced into these extracts poly-
styrene beads coated with the FH1-COOH (amino acids 1227–
1954) domain of Bni1 (46). These beads were added to cytoplas-
mic extracts from yeast expressing Abp140 tagged with three
molecules of GFP (Abp140-3×GFP) as an actin cable marker.
Initially, we incubated the GST-Bni1 FH1-COOH–coated beads
in extracts from unsynchronized log-phase yeast cells. Although
Las17 (yeast WASP)-functionalized beads incubated in these ex-
tracts effectively formed actin comet tails (Fig. S1A) (24), no F-actin
was detected in association with the GST-Bni1 FH1-COOH–coated
beads (Fig. 1A).
Recently, F-actin assembly was found to be regulated by the

cell cycle in vertebrates (43, 45). Actin bundles assembled in
metaphase were thicker and/or more prevalent than those as-
sembled in interphase (43). Cell-cycle regulation of actin as-
sembly may be a conserved phenomenon because actin cables in
fission yeast are present as thicker bundles and are comprised of
longer filaments in the G2/M stage of the cell cycle (47). We
therefore tested for actin cable assembly in yeast metaphase
extracts. The yeast cell cycle is regulated by the periodic ap-
pearance of distinct cyclins, which activate cyclin-dependent ki-
nase 1 (Cdk1) (48). We avoided the use of temperature-sensitive
cell-cycle mutants to minimize potential heat shock effects on
F-actin behavior (49). Instead, we used either hydroxyurea (HU)
or nocodazole to arrest cells before preparing the cytoplasmic
extracts. Examination of the cyclin levels revealed that the
extracts from the HU- and nocodazole-treated cells showed el-
evated mitotic cyclin (Clb2) levels relative to S- and G1-phase
cyclins (Clb5, Clb3, and Cln2) (Fig. 1B) (48). Strikingly, when
GST-Bni1 FH1-COOH beads were incubated in extracts from
HU- and nocodazole-arrested cells, actin cables polymerized
from the beads (Fig. 1A). To control for effects of residual
chemicals in our assays, we supplemented different concen-
trations of HU or nocodazole in unsynchronized cell extracts.
We tested HU at 0.15 M, 7.5 mM, and 0.375 mM and nocoda-
zole at 15 μM, 0.75 μM, and 0.0375 μM. We did not observe
F-actin assembly in response to any of these treatments. (Rep-
resentative images are shown in Fig. S1B.) Beads coated with
GST alone were not sufficient to assemble actin filaments (Fig.
S1C). In addition, we tested whether the other budding yeast
formin, Bnr1, can assemble actin cables in the extract system.
However, even though GST-Bnr1 FH1-COOH had a higher
activity than GST-Bni1 FH1-COOH for pyrene actin nucleation
in a solution assay (Fig. S1 D and E) (50), GST-Bni1 FH1-
COOH on beads incubated in extracts from HU-arrested cells or
in solutions of pure actin can nucleate actin cables, but GST-
Bnr1 FH1-COOH cannot (Fig. S1 F and G).
Using extracts from HU- and nocodazole-arrested cells, 81.6 ±

8.7% and 80.3 ± 7.8% of GST-Bni1 FH1-COOH–coated beads,
respectively, were surrounded by actin cables (Fig. 1C). The actin
cables assembled at a rate of 2.9 ± 0.661 μm/min, which is
equivalent to ∼18 subunits/s based on 370 subunits/μm of actin
filament (Fig. S1H). This rate is of the same order of magnitude
as actin cable assembly observed for budding yeast in vivo (51,
52). Once formed, the actin cables persisted for longer than 1 h.
To explore further the cell-cycle regulation of actin assembly, we

performed the actin cable reconstitution in cell extracts prepared
fromcells arrested inmetaphase by transcriptional repression of the
CDC20 gene (53). The endogenousCDC20 promoter was replaced
by amethionine promoter, allowingCDC20 expression to be turned
off upon addition of methionine-supplementedmedium. Similar to
extracts prepared from HU- and nocodazole-treated cells, extracts
from pMET-CDC20 arrested cells also initiated actin cable for-
mation on Bni1 FH1-COOH–coated beads (Fig. 1 A and C).
To analyze the relationship between cable-assembly activity

and cyclin expression, we synchronized cdc15-2 cells expressing
epitope tagged-cyclins (Table S1) and Abp140-3×GFP. cdc15-2
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Fig. 1. Reconstitution of actin cables nucleated by Bni1 on polystyrene
microspheres in yeast cytoplasmic extracts. (A) GST-Bni1 FH1-COOH–func-
tionalized 2-μm microspheres were added to different cytoplasmic extracts
generated from yeast cells expressing Abp140-3×GFP. Extracts prepared
from HU-, nocodazole-, and pMET-CDC20–arrested cells, but not from un-
synchronized cells, support actin cable assembly. Polystyrene beads are
shown by transillumination. (B) The percentage of beads with or without
actin cables for the reactions in A, including unsynchronized (n = 10 in-
dividual experiments) and HU- (n = 9), nocodazole- (n = 4), and pMET-
CDC20–arrested cells (n = 4). (C) Cyclin levels were determined by Western
blotting of extracts from unsynchronized and HU- and nocodazole-arrested
cells. Pgk1 was used as a loading control. (D) Inhibition of Cdk1 activity using
1NM-PP1 on HU-arrested cdk1-as1 cells before extract preparation blocks
actin cable formation by GST-Bni1 FH1-COOH–coated beads. 1NM-PP1 at
a final concentration of 20 μM was added for 30 min before sample prep-
aration. (E) The percentage of beads with or without actin cables for reac-
tions in D (n = 3). (F) The protein concentrations for cytoplasmic extracts
used for actin reconstitution in D are compared by anti-Pgk1 Western blot.
(Scale bars, 5 μm.) (G–I) Actin cables were assembled from GST-Bni1 FH1-
COOH–functionalized beads in cell extracts derived from HU-arrested cells.
Polymerized F-actin was negatively stained and visualized by EM. (G) Actin
cables emanating from polystyrene beads, viewed at low magnification by
negative-staining EM. (H and I) High-magnification images showing actin
filament bundles.
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cells were first arrested at late anaphase/telophase by incubation
at 37 °C for 180 min (54). Then they were released by shifting
to 25 °C, and cells were harvested every 30 min for parallel
immunoblotting and actin cable-assembly assay. These studies
revealed that the mitotic cyclin Clb2 is highly enriched in the
extracts producing robust actin cable formation from GST-Bni1
FH1-COOH–functionalized beads (Fig. S2). However, the per-
centage of beads containing actin cables was lower (42%) than in
extracts made from HU- or nocodazole-arrested cells. The
most plausible explanation for the lower assembly in cdc15
mutant extracts is that the temperature-sensitive mutant is not
fully reversible.
We next tested whether Cdk1 kinase activity is required for

actin cable assembly from Bni1 FH1-COOH beads. To address
this question, endogenous Cdk1 was replaced by an analog-
sensitive allele of Cdk1 (cdk1-as1), which can be specifically
inhibited by the ATP analog 1-NM-PP1 (55-57). cdk1-as1 cells
were synchronized by HU addition and then were treated with 20
μM of the ATP analog 1-NM-PP1 for 30 min to inhibit the Cdk1
kinase activity specifically or as a control were treated with
DMSO before extract preparation. Inhibition of Cdk1 activity
caused actin cable-assembly activity to be abolished completely
(Fig. 1 D and E), whereas treatment of Cdk1 WT cells with 1-
NM-PP1 did not affect actin assembly (Fig. S1I). The loss of
cable-assembly activity in inhibitor-treated cdk1-as1 cells was not
caused by a difference in soluble protein levels in the cytoplasmic
extract, as shown by a phosphoglycerate kinase 1 (Pgk1) loading
control (Fig. 1F).

Reconstituted Actin Cables Are Bundles of Actin Filaments. In yeast,
actin cables are nucleated by formin proteins, stabilized by tropo-
myosin (Tpm1), are composed of bundles of short filaments, and
are localized near the cell cortex (50, 52, 58–63). To analyze the
structural properties of the actin structures nucleated from theBni1
FH1-COOH beads in cytoplasmic extracts, we examined the
reconstituted F-actin structures by negative-staining EM (Fig. 1G–

I). Actin filaments were assembled for 30 min on GST-Bni1 FH1-
COOH beads and were subjected to negative staining on carbon-
coated grids. Because of the high electron density of negatively
stained polystyrene beads, a dark blurry area occupied a 200- to
300-nm zone around the beads. The actin filaments assembled
from the GST-Bni1 FH1-COOH–coated beads appeared in
EM as bundles comprised of 10-nm unbranched filaments with
an average thickness of 83.8± 18.5 nm (n= 52 from 16 bundles,
measured within 1 μm from the bead boundary). This di-
mension is consistent with the reported in vivo cable thickness
(90–100 nm) at the G2/M stage in fission yeast (47). Because it
was difficult to discern the ends of filaments, we could not
calculate their individual lengths. Because Bni1 has not been
reported to have a bundling activity (50), the appearance of
bundles in the cytoplasmic extracts suggests the presence of
bundling factors.

Recapitulation of Regulatory Protein Dependence During Actin Cable
Reconstitution. To test how faithfully the Bni1 FH1-COOH–

dependent actin cable-reconstitution system recapitulates the
in vivo function of actin-regulatory proteins, we generated extracts
from fourmutants inwhich actin-interacting proteinswere knocked
out or rendered dysfunctional. These included the actin cable-
specific stabilizing protein Tpm1, the barbed end-capping pro
tein (Cap2), the depolymerization factor cofilin (Cof1), and the
actin cable regulator Bud6. HU-arrested cells expressing Abp140-
3×GFP were used for actin cable-reconstitution assays.
Mutants of different actin-interacting proteins showed distinct

actin cable phenotypes (Fig. 2 A–E). Deletion of TPM1 com-
pletely abolished cable formation (Fig. 2B), similar to the in vivo
phenotype (58, 61). In contrast, cables formed in cap2Δ extracts
were more numerous (>2.5 fold) than in WT extracts (Fig. 2 F

and H), whereas aberrantly long actin cables were formed in
cytoplasmic extracts from cof1-4 mutant cells (Fig. 2G). These
results are consistent with the observations that capping protein
antagonizes formin activity and that cofilin promotes cable turn-
over in vivo (64–67). Addition of 5 μM Latrunculin A (LatA) to
WT extracts subsequent to cable assembly caused complete actin
cable disassembly within 5 min (Fig. S3 A and C), suggesting that
assembled F-actin turns over dynamically in this extract system,
similar to observations in live cells (52, 68, 69). In cof1-4 extracts,
however, reconstituted cables disassembled more slowly upon
LatA addition (Fig. S3 B and D). Compared with WT extracts,
bud6Δ extracts did not show obvious defects in actin cable as-
sembly from beads (Fig. 2E). We found that our membrane-free
cytoplasmic extract supernatants contain much less Bud6 than
whole-cell extracts (Fig. S3E), which is consistent with the
membrane-associated nature of Bud6 (70). Thus it is unlikely
that the reason no effect on actin cable assembly was observed in
bud6Δ extracts relative to WT extracts is because Bud6 levels are
depleted in our WT extracts. The actin elongation rate in bud6Δ
extracts also was similar to that in WT extracts (17 versus 18
subunits/s) (Fig. S3F). We found that actin polymerization is
initiated with similar timing in WT and bud6Δ extracts and that
the cables showed similar geometry (Fig. S3G). Taken together,
these observations indicate that the Bni1 FH1-COOH–based
actin cable-reconstitution system faithfully recapitulates the
functions of actin-interacting proteins and actin cable dynamics
and provides functional insights; therefore Bni1 FH1-COOH–

based actin cable-reconstitution is a robust system for studies of
actin cable assembly.

MS Reveals the Protein Composition of Bni1-Nucleated Actin Cables.
To identify the proteins associated with the Bni1-derived actin
cables, we performed MS on the F-actin structures assembled
from beads in yeast extracts. We avoided using the F-actin–sta-
bilizing drug phalloidin, which competes with some actin-binding
proteins (71). Polystyrene beads with assembled actin cables were
washed and prepared for MS (Materials and Methods). The MS
analysis identified 592 yeast proteins (Dataset S1) using stringent
criteria with false-discovery rates reduced to 0–0.5% (Materials
andMethods). Because of the high sensitivity ofMS identification,
we used a statistical method to identify the enriched proteins by
comparing our MS results with the PeptideAtlas database using
protein spectrum counts, as described previously (Materials and
Methods) (24). Using this strategy, 115 proteins (Fig. 3 and
Datasets S2 and S3) were found to be enriched in the Bni1 FH1-
COOH–derived actin cables (P < 0.05). We normalized protein
extract samples by loading equal protein in each lane (Fig. 3 B and
C) and found that yeast actin was the most highly enriched and
abundant protein (Fig. 3 B and C). The reconstituted cables also
were enriched for the actin cytoskeleton proteins, fimbrin (Sac6),
and Tpm1 (Fig. 3D), which associate with actin cables in vivo.
Pgk1, a cytosolic 3-phosphoglycerate kinase with no known af-
finity for actin, was not detected (Fig. 3C).
Previously, we found that actin networks nucleated in yeast

extracts by the Arp2/3 complex consisted largely of proteins as-
sociated with Arp2/3-nucleated networks in cells (24). Here, we
detected actin-binding protein 1 (Abp1), thought to associate
primarily with Arp2/3-derived actin patches, associated with Bni1
FH1-COOH–derived actin cables (Fig. 3C). However, the en-
richment of Abp1 was 10 times less than observed in our actin
patch reconstitution (24). A null allele of ABP1 did not affect the
formation of GST-Bni1 FH1-COOH–derived actin cables (Fig.
S4A). Arp2/3 proteins similarly were detected by MS (Fig. 3A),
immunoblotting (Fig. 3C), and detection of fluorescently tagged
proteins (Fig. S4B). However, we did not detect the Arp2/3 nu-
cleation-promoting factorsMyo3/5, Las17, or Pan1byMS,Western
blotting, or by detection of fluorescently tagged proteins (Fig. S4 C
andD). To test further whether GST-Bni1 FH1-COOH–mediated
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actin cable assembly was dependent onArp2/3 complex activity, we
added theArp2/3 complex inhibitor CK-666 and the control analog
CK-689 at 100 μMtoHU-arrested extracts. First, to test the activity
and potency of the inhibitors, we used Las17-coated beads in HU
extracts from cells expressing Abp1-mRFP. CK-666 at 100 μM, but
not CK-689 or a DMSO control, effectively abolished actin tail
formation, even though Abp1 still was recruited to the Las17-
coated beads (Fig. S4E). However, CK-666 did not inhibit actin
cable assembly fromGST-Bni1 FH1-COOH–coated beads in HU-
arrested extracts (Fig. S4 F and G) (72). Furthermore, although
Bni1-derived actin filaments also form the contractile actomyosin
ring in vivo (73), we did not detect the type II myosin Myo1 or the
IQGAP protein Iqg1 byMS or by detection of fluorescently tagged
proteins (Fig. 4A and Fig. S4H). These results suggest that the
reconstituted actin structures primarily resemble actin cables rather
than actin patches or the contractile ring.

Cdk1-Dependent Actin Cable Regulation in Vivo. To investigate how
actin cables are regulated through the cell cycle in vivo, we first
examined actin cables using super-resolution microscopy and
Cdk1 inhibition using the cdk1-as1 allele. We stained yeast actin
filaments with Alexa-568 phalloidin in cells expressing GFP-tag-
ged Tub1 (α-tubulin) (GFP-Tub1), an indicator of cell-cycle stage.
To distinguish actin cables better, we resolved them by super-
resolution 3D structured illumination microscopy (SIM), instead

of by conventional fluorescence microscopy (Fig. 4A and Movie
S1) (74). We measured the average signal intensity of actin cables
in metaphase cells with high Cdk1 activity and in G1 cells with the
lowest Cdk1 activity (75).We found that actin cables inmetaphase
cells had 21% higher average signal intensity than those in G1
cells, indicating that metaphase cells have a higher abundance of
actin filaments per cable area than G1 cells (Fig. 4B). Second, we
tested the effect of Cdk1 inhibition on actin cables in bnr1Δ cells
that depend on Bni1 as the sole actin cable nucleator. We mea-
sured the speed of actin cable movement, a reflection of assembly
rates, in living cells by following the positions of cable ends over
time using Abp140-3×GFP. Because of the predominant cortical
localization of cables (76), we monitored the actin cable move-
ment close to cell cortex. In HU-arrested cells, actin cable ends
moved at 1.18 ± 0.35 μm/s (Fig. 4C), similar to rates previously
reported (76). However, when Cdk1 activity in cdk1-as1 cells
was inhibited by treatment with 20 μM 1-NM-PP1 for 30 min,
actin cable velocity was reduced to 0.98 ± 0.23 μm/s (Fig. 4C
and Movies S2 and S3). Finally, we examined the effects of Cdk1
inhibition on the average intensity of the actin cable signal by mixing
Cdk1 and cdk1-as1 cells in the same imaging sample to minimize
sample-to-sample signal variation. To distinguish the two cell lines,
Abp1-mRFP, which has a strong actin patch signal, and Bni1-
3×mCherry, with a weak cortical signal, were used to distinguish
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cdk1-as1 and Cdk1WT cells, respectively. Cells first were arrested
inHU for 3 h, followed by treatment for 30min in DMSO alone as
a control or 20 μM 1-NM-PP1. Cdk1 and cdk1-as1 cells showed
similar signal intensities upon DMSO treatment (Fig. 4D).
However, the average actin cable signal was 40% lower in in cdk1-
as1 cells in which Cdk1 was inhibited by 1-NM-PP1 than in cells
with normal Cdk1 activity (Fig. 4 D and E). To assess the speci-
ficity of this effect, we also tested whether Cdk1 activity is im-
portant for clathrin-mediated endocytosis, which is driven by
Arp2/3-dependent actin filament nucleation. We did not observe
detectable changes in the lifetimes or the dynamics of endocytic
proteins of the earlymodule (Ede1, Syp1), the coatmodule (Sla1),
or the actin module (Abp1) upon inhibition of Cdk1 activity
(Fig. S5) (77).

Cell-Cycle–Dependent Actin Cable Assembly Is Conserved in Vertebrates.
The basic cell-cycle regulatory machinery consisting of Cdk1 and
cyclins shows high conservation between yeast and vertebrate
cells (48). To determine whether cell-cycle regulation of actin
cable assembly is conserved from yeast to vertebrates, we per-
formed actin cable-assembly reconstitutions in metaphase and
interphase Xenopus laevis extracts, using the mammalian formin
protein, mDia2. In mammalian cells, mDia2 plays an important

role in generating actin filament bundles for filopodia protrusion
(78–80). We coated polystyrene beads (2-μm diameter) with
GST-mDia2 FH1-COOH and assayed for rhodamine-actin as-
sembly in Xenopus extracts. Similar to our observations with
GST-Bni1 FH1-COOH–coated beads in yeast extracts, GST-
mDia2 FH1-COOH–coated beads nucleated actin filament as-
sembly in metaphase Xenopus extracts (Fig. 5 A and C). Beads
coated with GST alone did not nucleate actin filament assembly
(Fig. S6 A andD). Moreover, actin filaments were not assembled
from GST-mDia2 FH1-COOH–coated beads in interphase
Xenopus extracts, although some actin filaments not associated
with the beads were detectable in the background (Fig. 5 B andD).
In addition, supplementation with 10 μMof the Cdk1 inhibitor RO-
3306 completely abolished actin filament assembly from GST-
mDia2 FH1-COOH–coated beads (Fig. S6 B, C, E, and F) (81).
These observations demonstrate conservation of cell-cycle–regu-
lated actin cable assembly.

Discussion
Yeast Actin Cable Reconstitution. We described here successful
reconstitution of yeast actin cables in cell extracts using
microbeads coated with the Bni1 FH1-COOH domain. This actin
cable-reconstitution system recapitulates to a large degree the
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properties observed for actin cables in vivo: (i) the cables consist of
bundles of actin filaments; (ii) they contain biologically relevant
cable-associated proteins; (iii) their assembly shows a dependence
on the relevant actin-regulatory proteins; and (iv) the cables are
under cell-cycle regulation. This reconstitution system also facili-
tated the identification of previously unknown actin cable com-
ponents.

Understanding how Actin Cables of Defined Architecture and Protein
Composition Assemble. In yeast cells, both branched endocytic
actin networks and cables composed of unbranched actin fila-
ments are assembled from the same actin but are nucleated by
distinct factors, the Arp2/3 complex and formin proteins, re-
spectively. How different actin-based structures with distinct

associated proteins and distinct architectures are assembled in
a common cytoplasm is an important unanswered question.
Results here reinforce the conclusion that the identity of an actin
filament is established upon its birth, likely mediated by the
distinct nucleation factors, and is reinforced by competitive and
cooperative interactions of proteins with actin filaments and by
filament twist (1, 82).
The actin cable-reconstitution system enabled us to identify, in

an unbiased manner using MS, factors involved actin cable for-
mation. As with our previous actin patch reconstitution (1), MS
was used to generate an actin cable parts list. This parts list in
turn was used to identify candidate cable regulators, whose
functions we tested using the reconstitution system and genetics.

bnr1  cdk1-as1 Abp140-3XGFP

A
ct

in
 c

ab
le

 m
ov

em
en

t s
pe

ed
 (µ

m
/s

)

HU + DMSO        HU + 1-NM-PP1   

Fluorecent signal intensity (A.U.)

bnr1  cdk1-as1 Abp140-3XGFP Abp1-mRFP / bnr1  Abp140-3XGFP Bni1-3XmCherry

m
R

FP
 / 

m
C

he
rr

y 
   

   
   

   
   

   
   

   
   

   
   

  G
FP

   
   

   
   

   
   

   
   

   
   

   
   

   
  G

FP

m
R

FP
 / 

m
C

he
rr

y 
   

   
   

   
   

   
  G

FP
   

   
   

   
   

   
   

   
   

   
   

  G
FP

 HU+DMSO  HU+1-NM-PP1

20406080

100

120

140

160
180

200

220

240

Metaphase G1

A
ct

in
 c

ab
le

 s
ig

na
l i

nt
en

si
ty

 (A
.U

.) 
pe

r µ
m

C

D

EB

2

A F-Actin   Microtubule

*** ***

80

100

120

140

160

180

0.5

1.0

1.5

2.0

2.5
bnr1  cdk1-as1 Abp140-3XGFP

Cdk1 Cdk1 cdk1cdk1

HU + 1-NM-PP1HU + DMSO

A
ct

in
 c

ab
le

 s
ig

na
l i

nt
en

si
ty

 (A
.U

.) 
pe

r µ
m

2

0

200

400

600 ***1

2

3

4

5

6

7

Fig. 4. In vivo Cdk1 regulation of formin-nucleated actin cables. (A) Average intensity projections along the z-axis of WT cells stained with Alexa-568
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by two-tailed Student t test assuming equal variances; ***P < 0.0001.
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The cable-associated proteins identified by MS included Bud6,
a cofactor for Bni1 (46, 83); the barbed end-capping proteins
Cap1/Cap2 (84, 85); the filament-stabilizing protein Tpm1 (58,
61); the filament-bundling protein Sac6 (86, 87); and the de-
polymerization factors Cof1, actin-interacting protein 1, coronin
1 (Crn1), and Srv2 (88–90).

Function of Actin-Binding Proteins in Actin Cable Assembly. The actin
cable-reconstitution system allowed the functions of cable regu-
lators to be tested in the context of the full complexity of the cy-
toplasm. The actin filament-stabilizing protein Tpm1 was enriched
in the reconstituted cables, and actin cable assembly showed a
pronounced dependence on Tpm1 that recapitulates the in vivo
dependence (58, 61).
Sensitivity of the reconstituted actin cables to the actin in-

hibitor LatA established that the actin filaments in the cables
turn over dynamically in the extract system. In vivo studies using
LatA demonstrated that actin cable turnover depends on cofilin
function in vivo (67). Cofilin has different activities on actin fil-
aments in vitro, depending on the concentration (91), so it was
important to test cofilin’s cable-regulatory role in the context of
the full complexity of the extract system. Cofilin does not localize
to actin cables detectably in vivo except in an aip1-null mutant
(64, 86, 92). In extracts prepared from a cofilin mutant, actin
cables were clearly longer and less sensitive to LatA treatment,
consistent with the in vivo observations (67).
The heterodimeric capping protein competes with formins for

actin filament barbed ends in vitro (64–66). Our results with the
reconstituted actin cables assembled in yeast extracts reinforced
observations made with pure proteins in vitro. We found that
more cables assembled in extracts deficient in capping protein.
We also found that proteins of the small heat shock protein

family (sHsps) were enriched with the reconstituted actin cables.
Three sHsp proteins—Hsp12, Hsp26, and Hsp42—were identi-
fied in the actin cable preparations. Hsp12 and Hsp26 were
unique to Bni1-derived cables, but Hsp42 also was identified in
association with Las17-derived actin patches (24). sHsps were
reported to function as capping proteins or stabilization factors
that protect actin filaments from severing proteins via direct or
indirect interaction with actin filaments, indicating that functions

for this family of proteins in cable regulation should be in-
vestigated further (93–96).

Cell-Cycle Regulation of Yeast Actin Cable Assembly. The yeast actin
cytoskeleton undergoes a precise program of rearrangements
throughout the cell cycle (97). The basis for these changes is not
known, but we showed that inhibition of Cdk1 activity reduced
cable-assembly rates and cable intensity in vivo. Recent reports
in metazoans revealed up-regulation of actin assembly during
metaphase (42, 43, 45). However, which types of actin filament
networks are being regulated and which actin nucleation systems
are being regulated are unclear. The Arp2/3 complex was sug-
gested to be responsible for such metaphase-specific events for
cell division (43, 45, 98). On the other hand, the formin protein
Fmn2 was suggested to cooperate with Spire to assemble meta-
phase actin filaments for asymmetric cell divisions (99–101).
Here, we found that formin-mediated actin cable assembly was

enhanced substantially in mitotic cell extracts in both yeast and
vertebrates. Cdk1 activity was indispensible for reconstitution of
yeast actin cable assembly, and the extracts that best supported cable
assembly were enriched in themitotic cyclin Clb2. Cdk1 activity also
showed in vivo regulation of the speed of actin cablemovement and
cable intensity. No such effects were observed for Arp2/3-mediated
actin nucleation, consistent with the observation that inhibition of
Cdk1 activity did not affect endocytic internalization (102). In
contrast to Bni1-derived actin cable reconstitution, Las17-derived
actin networks can be reconstituted successfully in cytoplasmic
extracts prepared from unsynchronized cells (24). Consistently, we
did not observe detectable changes in the lifetimes or the dynamic
behavior of endocytic patch proteins upon inhibition of Cdk1 ac-
tivity in cells.
Presently, we do not know how many cable components are

regulated by Cdk1 activity. In previous studies, several cable related
proteins were identified as Cdk1 substrates in both in vivo and in
vitro studies, and their phosphorylation levels were changed upon
Cdk1 inhibition. These proteins include Bni1, Bud6, Crn1, Cap2,
andCof1 (55, 103). Bni1 andBud6might not bemajor determinants
of cell-cycle–regulated actin cable assembly in our extracts, because
weused constitutively activeBni1 andbecauseBud6absence did not
affect actin cable assembly. Interestingly, Cdk1 inhibition resulted in
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Fig. 5. Cell-cycle regulation of formin-nucleated actin assembly in vertebrate extracts. Polystyrene beads (2 μm) coated with GST-mDia2 FH1-COOH were
added to metaphase (A) and interphase (B) X. laevis egg extracts. Then 0.4 μM of G-actin containing 20% Rhodamine-actin was added to the extracts. Images
were taken after 30 min of incubation. C and D are magnified fields of A and B, respectively. The left subpanels in C and D show boxed area 1 (a field next to
the beads) in A and B, respectively; the right subpanels in C and D show boxed area 2 (a field at least 15 μm away from the beads) in A and B, respectively.
(Scale bars, 20 μm.)
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Cof1 phosphorylation on Ser4 (55). A serine-to-alanine mutant on
Ser4 of Cof1, cof1-4, shows aberrantly long cables in our extract
assay. How Cdk1 affects Cof1 phosphorylation and the biological
effects require further study. Furthermore, because we found that
Cdk1 regulates actin cable intensity in vivo, bundling proteins
should be investigated. The cell-cycle–dependent reconstitution of
actin cable assembly in extracts frombudding yeast, a favoritemodel
for cell-cycle studies, opens the way toward elucidating the regula-
tory mechanism and identifying the relevant Cdk1 targets.

Materials and Methods
Yeast Strains, Growth Conditions, and Plasmids. Yeast strains used in this study
are listed in Table S1. C-terminal GFP and RFP tags were integrated by ho-
mologous recombination, as described previously (77, 104). All strains were
grown at 30 °C in standard richmedium (Yeast Extract Peptone Dextrose, YPD)
or synthetic medium supplemented with appropriate amino acids, unless
otherwise noted. Plates were incubated for 3 d before scoring cell growth.

Protein Purification. GST-Bni1 COOH and Las17 were expressed and purified
essentially as previously described (105), except for the method for breaking
the cells. Yeast cells used for protein purification were ground using a 6870
Freezer/Mill (SPEX SamplePrep, LLC) for six cycles consisting of 3min of beating
followed by 1 min of cooling. Protein concentrations were determined using
the Gelcode blue staining reagent (Thermo Scientific) with BSA as a standard.

Actin Filament Polymerization on Beads in Cell Extracts. Two-micrometer
nonfunctionalized polystyrene microspheres (Polybead Microsphere; Poly-
sciences, Inc.) were incubated on ice with 100 nM GST-formin proteins in 25 μL
of HK buffer [10 mM Hepes buffer (pH 7.8), 0.1 M KCl] for 40 min before
BSA was added to a concentration of 1% and incubation for additional 15
min. Beads were washed two times by HK buffer containing 0.1% BSA, were
stored in 25 μL of HK buffer, and were used within 8 h without significant
loss of actin cable-assembly activity.

Unsynchronized yeast cells were collected from cultures grown at 30 °C in
YPD to OD600 0.8–1.0. HU and nocodazole arrests were achieved by adding
drugs to cells at an OD600 of 0.7 followed by culture for two additional
generations. The drug concentrations used were 0.15 M for HU and 15 μM
for nocodazole. To arrest cells carrying pMET-CDC20, methionine was added
to a final concentration of 10 mM to cells at an OD600 of 0.7, followed by
incubation at 30 °C for 3 h before collection. Cells were harvested by cen-
trifugation at 3,000 × g for 10 min at 4 °C, were washed once in cold water,
and were centrifuged again. Cells were resuspended at 180 OD/mL in cold
water before being flash-frozen in liquid N2 and were ground by mortar and
pestle for actin polymerization assays on beads. Yeast powder was mixed
gently and thawed with 10× HK buffer and protease inhibitors (Protease
Inhibitor Mixture Set IV; Calbiochem, Merck4Biosciences) and was centri-
fuged for 25 min at 350,000 × g. The supernatant under the lipid layer was
collected and used within 3 h. For all actin-reconstitution experiments using
yeast cell extracts, 1 μL of the functionalized microsphere beads was added
to 19 μL of extract to induce formation of actin filaments.

Xenopus extracts from oocytes arrested at metaphase by cytostatic factor
were prepared and provided by the R. Heald laboratory, University of Cal-
ifornia, Berkeley, CA. Cytochalasin D was omitted from all steps during prep-
aration. Interphase extracts were prepared from Xenopus extracts by the
addition of calcium at a final concentration 0.4 mM to crude cytostatic factor
extracts followed by incubation at room temperature for 30 min. Polystyrene
beads coated with GST-mDia2 FH1-COOH (1 μL) were incubated with 8 μL of
extract and 1 μL of 3 μM rabbit actin [20% (mol/mol) rhodamine-actin].

Actin Cable-Like Structure Purification and Sample Preparation for MS. Actin
cable-like structures were assembled around the polystyrene microspheres
for 30 min at room temperature in 500 μL of extract. Beads were collected
and washed essentially as previously described (24).

Data-dependent tandem MS analysis was performed with a LTQ-Orbitrap
mass spectrometer (ThermoFisher). Full MS and tandem mass spectra were
extracted from raw files, and the tandemmass spectra were searched against
a Saccharomyces cerevisiae protein database (database released on De-
cember 16, 2005). To estimate peptide probabilities and false-discovery rates
accurately, we used a reverse decoy database containing the reversed
sequences of all the proteins appended to the target database (106). Tan-
dem mass spectra were matched to sequences using the ProLuCID algorithm.

ProLuCID searcheswere done on an Intel Xeon 80 processor cluster running
under the Linux operating system. The peptide mass search tolerance was set
to 10 ppm for spectra acquired on the LTQ-Orbitrap instrument. The mass of

the amino acid cysteine was statically modified by +57.02146 Da, to take into
account the carboxyamidomethylation of the sample. No enzymatic cleav-
age conditions were imposed on the database search, so the search space
included all candidate peptides whose theoretical mass fell within the mass
tolerance window, regardless of their tryptic status (107, 108).

The validity of peptide/spectrum matches (PSMs) was assessed in DTASelect
(109, 110) using two SEQUEST-defined parameters, the cross-correlation score
(XCorr), and normalized difference in cross-correlation scores (DeltaCN). The
search results were grouped by charge state (+1, +2, +3, and greater than +3)
and tryptic status (fully tryptic, half-tryptic, and nontryptic), resulting in 12 dis-
tinct subgroups. In each of these subgroups, the distribution of Xcorr and Del-
taCN values for (i) direct and (ii) decoy database PSMs was obtained; then the
direct anddecoy subsetswere separatedbydiscriminant analysis. Full separation
of the direct and decoy PSM subsets generally is not possible; therefore, peptide
match probabilities were calculated based on a nonparametric fit of the direct
and decoy score distributions. A peptide probability of 90% was set as the
minimum threshold. The false-discovery rate was calculated as the percentage
of reverse decoy PSMs among all of the PSMs that passed the 90% probability
threshold. In addition, we required that every protein be supported by at least
a unique peptide with probability greater than 99%. After this last filtering
step, we estimate that both the protein and peptide false-discovery rates
were reduced to between 0.0 and 0.5%. (Dataset S1).

Because of the nature of the complex mixtures from cell extract samples,
we took advantage of spectrum counting, which provides more reproducible
linear correlations with protein abundance (24, 111, 112), to identify the
enriched proteins in our reconstituted actin filament system. To analyze the
peptide enrichment in specific protein samples, we compared the spectral
counts of the actin assembly samples with spectral counts for peptides in
PeptideAtlas (www.peptideatlas.org/) (113), which contains an inventory of
60,313 distinct peptides from Saccharomyces cerevisiae proteome (version
Dec. 2011). By comparison with the PeptideAtlas database, the statistical
significance for each protein (Dataset S2) from an actin assembly sample
identified by LC-MS/MS was determined by calculating the one-sided P value
of a Fisher’s exact test with R (www.R-project.org/). Only six proteins iden-
tified in the actin assembly samples were not recorded in the PeptideAtlas
database. We chose a P value < 0.05 as a threshold to identify the proteins
enriched with the highest probability. Network diagrams for enriched pro-
teins were generated by Osprey 1.0.1 (114) software by Gene Ontology (GO)
annotation (The Gene Ontology Consortium, 2000; Dataset S3) derived from
the Saccharomyces Genome Database (www.yeastgenome.org). Only inter-
actions among indentified proteins were shown to reduce the complexity.

EM. Actin cables were reconstituted in 1.5-mL Eppendorf tubes by incubating
GST-Bni1 FH1-COOH–coated beads with yeast extract for 30 min. Beads were
collected and washed in HK buffer as previously described (24) and then
were resupended in HK buffer, immediately spotted (10 μL) onto carbon-
coated copper grids, and negatively stained with 2% (wt/vol) aqueous uranyl
acetate for 2 min. Air-dried samples were examined at 120 kV in a Tecnai 12
transmission electron microscope (FEI), and images were recorded using an
Ultrascan 1000 CCD camera (Gatan, Inc.).

Fluorescence Microscopy and Image Analysis. For the in vitro bead assay, 3.2 μL
of cell extract containing functionalized beads was placed between a slide
and a coverslip, whichwas sealedwith a 1:1:1mixture of Vaseline, lanolin, and
paraffin. Bead assay images were acquired using anOlympus IX81microscope
equipped with a 60× PlanApo objective and a CCD camera (Orca II; Hama-
matsu Photonics). For imaging yeast fluorescent signals in vivo, cells were
immobilized as described previously (77, 104), and images were acquired
using a Nikon Eclipse Ti-E inverted microscope (Nikon) with a solid-state
Spectra-X light engine (Lumencor), a 100×/NA1.40 Plan Apo VC objective, and
a Neo sCMOS camera (Andor Technology). Imaging data were collected using
Metamorph software (Molecular Devices) and processed using Image J (Na-
tional Institutes of Health). 3D SIM images were acquired essentially as pre-
viously described (115). The interactive 3D surface plot plugin of Image J was
used for actin cable pattern demonstration by measuring the surface fluo-
rescent signal intensity. The lifetimes of actin patches were measured by
Imaris software (Bitplane Scientific) as previously described (116).

Western Blotting. Yeast whole-cell extracts were prepared as described pre-
viously (117). The following antibodies were used in this study: anti-myc anti-
body (1:5,000; 9E10), anti-RFP antibody (1:2,000; Rockland), anti-Pgk1 antibody
(1:10,000; Invitrogen), anti-clb2 (y-180) (1:400; Santa Cruz Biotechnology), anti-
clb3 (y-427) (1:400; SantaCruzBiotechnology), anti-HA (12CA5) (1:5,000; Roche),
anti-Sac6 (polyclonal) (1:2,000), anti-Tpm1 (polyclonal) (1:1,000), anti-Arp3 (yG-
18) (1:250 Santa Cruz Biotechnology), and anti-Act1 (polyclonal) (1:2,000).
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